
GPFS Overview – Part II

March 22, 2002

Bill Loewe <wel@llnl.gov>
Mark Grondona <grondona@llnl.gov>

This work was performed under the auspices of the
U.S. Department of Energy

by the University of California,
Lawrence Livermore National Laboratory

under contract No. W-7405-Eng-48.

Topics
PART I:
• General GPFS Architecture and Functionality

PART II:
• Performance
• File System Evaluation and Comparison
• Integrity
• GPFS on Linux
• Sysadm View/Tools/Tuning

Performance
(AIX, GPFS 1.4)

Test Description:
• Segmented data pattern
• Transfer size = GPFS block size = 512KB
• 1 client process per node
• vary nodes
• create, write, and read a single common file (size = 512MB*n)

Client 1 Client 2 Client 3

Segmented

Hardware
(on white – Fall, 2001)

A p p l i c a t i o n N o d e s

SSA
Loop

5 Disks on each
RAID set (4 + P)

Switch

4+P

VSD Server

RIO

SSA

VSD Server(16)

(6)

(4)

(3)

• The Colony switch adapters are
double/single.

• System software is Mohonk2
(PSSP 3.3) with GPFS 1.4.

• The tests discussed here were
performed on white using up to
272 compute nodes and the GPFS
file systems using 16 dedicated
I/O nodes (servers).

• The tests performed utilize the
POSIX interface to GPFS.

2 Hot Spares

Tests
• BlockSize – amount of data being

written by an individual client. In these
tests, this will be a contiguous segment
of data.

• SubBlockSize – amount of data in the
buffer for a single write call. It should
match the stripe size of a RAID set.

• File size – product of the BlockSize and
the number of clients.

• BlockSize = 512MB
• SubBlockSize = 512KB
• Iterations = 3
• TasksPerNode = 1
• Nodes = [1, 4, 16, 32, 64, 128, 200,

272]

Each iteration of the test should erase
an existing file (if any), create the file,
write to the file, and close the file
using POSIX calls. The time to erase,
create, and close are not part of the
timing for performance.

Each iteration of each test will have all
clients open a single file on the GPFS.
Each client will then write to this file
in 512KB transfers until each has
completed its BlockSize. The access
will be in a segmented pattern.

Results
GPFS 1.4 Performance (White)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

1 4 16 32 64 128 200 272

Nodes

M
B/

se
c WRITE

READ

Evaluation Chart

GPFS Design Goals

main advantage parallel, high-performance
main disadvantage IBM hardware only
special features scalable

GPFS Synopsis
transparency yes
user mobility ?
file mobility ?
managability yes
limitations ?
scalability yes
performance yes

GPFS Architecture

name space global access
versioning ?
semantics of sharing & synchronization concurrent access
operations POSIX
atomic units byte

GPFS Implementation

client server yes
networking ?
communication protocol IP/KLAPI
locking yes
caching and aggregation yes
striping yes
pathname traversal POSIX
remote access method ?
availability global
fault tolerance yes
layered over other file system no
allocation method (block vs. extent) block

GPFS Managability

reconfiguration yes
extensibility yes
tuning yes
problem logging yes
installation yes
debugging support ?

GPFS Limitations

maximum file system size 4 petabytes
maximum file size 263-1 bytes (~8 exabytes)
maximum number of logical volumes 32 file systems
maximum number of directories ?
maximum number of files 256 million

GPFS Linux Specific Issues

kernel patch kernel extension

GPFS Performance
maximum asymptomatic data rate

writes on one I./O server 600 MB/sec
reads on one I./O server 800 MB/sec
writes on one client 180 MB/sec
reads on one client 450 MB/sec
block size at “elbow” 512KB
file size at “elbow” Scalable

File System Comparison

NFS DFS GFS PVFS GPFS
Scalability N Y Y Y Y
Parallelism N N N Y Y
Cross-platform Y Y N Y N
Security N Y N N Y
Failure recovery N Y ? N Y
Byte-range locking Y Y Y Y Y

GPFS Integrity
Interface
• POSIX

Security
• uses standard user/group security for file access
• uses sysctl commands, secured through Kerberos and ACL files

Consistency
• managed by Token Server Manager
• note that with locking, the algorithm is to give 0-infinity for first task;

then, if task 2 needs access from 1024-2047, give task 1 0-1023, and
task 2 from 1024-infinity

Failure/Recovery
• each node must be on the switch and have mmfs running on it; if it

crashes, the node is fenced off
• retry protocol in the VSD transport layer for each failure (dropped

packet), waits 2x as long before retrying
• logs (1 or 2 copies maintained for each node) contains record of

allocation and modification of metadata; used to assist with data
consistency and recovery when GPFS node fails

• Recoverable VSD (RVSD) used in conjunction with the twin-tailed or
loop cabling of SSAs, allowing for a fail-over. Without this, disks
would not be available were a node to fail.

• replication – how many copies of a file to maintain (default=1, max=2)
• failure group – a collection of disks that share common access paths or

adaptor connection and could all become unavailable through a single
hardware failure.

Recovery
• High Availability Group Services (HAGS) – a component of RSCT

(Reliable Scalable Cluster Technology) – notifies GPFS of failure of
another GPFS daemon or other component failure

• GPFS recovers from node failure using notifications from HAGS. If
necessary, new File System or Configuration Managers are selected
and started.

Recovery
GPFS provides protection against these failures:
Node failure
• When an inoperative node is detected, GPFS fences it off. Recovery

involves rebuilding metadata structures (which may have been
modified during failure). If not enough nodes in quorum (quorum =
nodeset / 2 + 1), then all GPFS nodes are restarted automatically.

Disk failure
• In the event of a disk failure, GPFS discontinues use of the disk and

waits for an available state. Setting the replication > 1 can offer
recoverability against a RAID failure.

• There are Metadata Replicas and Data Replicas settings. The
allowable values are 1 and 2 (single- or double-copy), with default=1
for both. (Thus, with the loss of one RAID, the entire file system is
lost.)

Connectivity failure
• This is controlled by creating environment-specific failure groups.

GPFS on Linux
• General move toward Beowulf Cluster computing (with

Linux leading the way).

• But, Linux has had a hard time keeping up in the arena of
parallel file systems. Lots of flops, but no where to write
the data quickly.

• IBM has ported GPFS to Linux to “ensure that GPFS will
become the de-facto file system standard for Linux
Clusters.”

GPFS on Linux Components

• Linux Kernel (Red Hat 7.1)
• RSCT (Reliable Scalable Cluster Technology) – subsystem

of GPFS providing
– HATS (High Availability Topology Services) – network services
– HAGS (High Availability Group Services) – distributed

coordination and synchronization
– EM (Event Manager) – system resources

• GPFS (General Parallel File System)
• NSD (Network Shared Disk)

Two Designs
Either GPFS Cluster with disks directly attached:

RSCT App RSCT App RSCT App

Linux

NSD NSDNSD Server

disks

disks

disks

disks

or GPFS Cluster with NSD server:

GPFS

Linux

GPFS

Linux Linux

GPFS
NSD

disks disks

NSD NSD

disks disks

RSCT App RSCT App RSCT App

Linux Linux

GPFS GPFS GPFS

Administrative Issues

Installation
Not a turnkey process. Description of what is involved in initial
installation/configuration of VSD servers and GPFS.
Scripts for automating installation.
GPFS command to define VSDs after setting up servers.

Configuration/Tuning
Adding/Removing disks from file system

Rebalancing.
Additional Tuning

More Administrative Issues
Administration

How much is automatic and how much must be done by hand (i.e.,
recovery, etc.)?

Since administration is distributed, a single administrative command on one
node migrates to all other nodes (for example, a single ‘mount’ makes it
possible to gain access to the entire file system no matter how many VSD
servers.)

Addressing errors/problems
Recoverable file system error (server crash, etc.)
Unrecoverable file system error (data or metadata is lost)

mmfsadm – views mmfsd threads
mmfsck

Other system administration issues and general problems
TCP communication timeouts
Disk Management – suspending writes to disks, migrating data off
failing disks, etc.

Configuration/Tuning
• We have done alot of work in the tuning area in the past. The major

thing was to make sure IO aligend with the disk block size. Thus the
256k base (we use 2x on white or 512k). This set by some of the
lower level components namely LVM and SSA. We picked 4+p
arrays because at 64k stripe width to each disk in the array 4*64=256k,
SSA allows 7+p but that comes out to 488k and does not work well
with GPFS. (Since an ssa drawer is max 16 drives doing something
like 8+p does not make sense because you cannot create 2 8+p arrays
in one drawer).

• Related to this is the max coalesce tuning which is an AIX LVM thing.
It says how much data to group together into one IO op. This again is
set to 256K the default is 128k.

Configuration/Tuning
• The other thing that we don't really mess with now is tuning the

number of threads in a client. We did do this on the blue/sky machine
before klapi. By limiting the number of threads available to do IO on
the batch nodes we were able to better controll the break point at of
client/server. Doing this also limits the single node performance,
however these settings are per node. So, the login nodes were tuned
up allowing for good single node performance.

Additional Information

– Bill Loewe <wel@llnl.gov>
– Mark Grondona <mgrondona@llnl.gov>

Special thanks to Dave Fox <foxd@llnl.gov>.

	GPFS Overview – Part II
	Topics
	Performance(AIX, GPFS 1.4)
	Hardware(on white – Fall, 2001)
	Tests
	Results
	Evaluation Chart
	File System Comparison
	GPFS Integrity
	Failure/Recovery
	Recovery
	Recovery
	GPFS on Linux
	GPFS on Linux Components
	Two Designs
	Administrative Issues
	More Administrative Issues
	Configuration/Tuning
	Configuration/Tuning
	Additional Information

